МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Комитет по образованию г. Санкт-Петербурга Администрация Центрального района г. Санкт-Петербурга

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №612 Центрального района Санкт-Петербурга

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
МО ПРОТОКОЛ №1 от 30.08.2024	Решением Педагогического совета ПРОТОКОЛ №1 от 30.08.2024	Директор школы ———————————————————————————————————

РАБОЧАЯ ПРОГРАММА

занятий внеурочной деятельности «Методы решения физических задач»

для обучающихся 8 класса

Санкт-Петербург 2024

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа курса внеурочной деятельности «Методы решения физических задач» для 8 класса составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования 1 (далее – Φ ГОС ООО).

В ГБОУ СОШ 612 курс внеурочной деятельности «Методы решения физических задач» реализуется в рамках программы работы с одаренными обучающимися в форме факультатива посредством включения в План внеурочной деятельности линейного курса « Методы решения физических задач», рассчитанного на 34 часа (1 час в неделю).

Данный курс внеурочной деятельности имеет своей целью развитие мышления, прежде всего, и формирование системного мышления. Изучение предмета «Методы решения физических задач» способствует решению следующих задач:

- знакомства обучающихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретения обучающимися знаний о механических явлениях, физических величинах, характеризующих эти явления;
- формирование у обучающихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;
- овладения обучающимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание обучающимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Ценностными ориентирами при освоении курса служат: социальная солидарность, труд и творчество, наука, искусство, природа, человечество и его развитие.

_

¹ Приказ Министерства образования и науки Российской Федерации от 17.12.2010 № 1897 «Об утверждении Федерального государственного образовательного стандарта основного общего образования» // Бюллетень нормативных актов федеральных органов исполнительной власти/. 2011. № 9.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «Методы решения физических задач»

Изучение курса внеурочной деятельности «Физика» направлено на формирование **личностных**, **метапредметных и предметных результатов** обучения, соответствующих требованиям федерального государственного образовательного стандарта основного образования:

Личностные результаты:

- 1. Формирование ответственного отношения к учению, готовности и способности к самообразованию и саморазвитию на основе мотивации к обучению и познанию, развитие самостоятельности в приобретении и совершенствовании новых знаний;
- 2. Формирование познавательных интересов, развитие интеллектуальных, творческих способностей, формирование осознанного выбора и построение дальнейшей индивидуальной траектории образования;
- 3. Воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- 4. Формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники, отношения к физике как к элементу общечеловеческой культуры;
 - 5. Умение контролировать процесс и результат учебной и исследовательской деятельности в процессе изучения законов природы;
- 6. Формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
- 7. Формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной деятельности в жизненных ситуациях
 - 8. Критичность мышления, инициатива, находчивость, активность при решении практических задач.

Метапредметные результаты:

- 1. Умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
- 2. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 3. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

- 4. Устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
 - 5. Развитие компетентности в области использования информационно-коммуникационных технологий;
- 6. Первоначальные представления об идеях и о методах физики как об универсальном инструменте науки и техники, о средстве моделирования явлений и процессов;
 - 7. Умение видеть физическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 8. Умение находить в различных источниках информацию, необходимую для решения физических задач, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
- 9. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение.
 - 10. Умение выдвигать гипотезы при решении задачи понимать необходимость их проверки;
 - 11. Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

- 1. Осознание ценности и значения физики и ее законов для повседневной жизни человека и ее роли в развитии материальной и духовной культуры.
- 2. Формирование представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о системообразующей роли физики для развития других естественных наук, техники и технологий.
- 3. Формирование представлений о закономерной связи и познаваемости явлений природы, об объективности научного познания, о системообразующей роли физики для развития других наук, техники и технологий.
- 4. Формирование первоначальных представлений о физической сущности явлений природы, видах материи, усвоение основных идей физики тепловых явлений (основных положений МКТ, законов термодинамики, основных принципов работы тепловых машин, законов электростатики, постоянного тока, Ампера, Лоренца).
- 5. Усвоения смысла физических законов, раскрывающих связь физических явлений, овладение понятийным аппаратом и символическим языком физики.
- 6. Формирование научного мировоззрения как результата изучения фундаментальных законов физики; умения пользоваться методами научного познания природы: проводить наблюдения, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез; планировать и выполнять эксперименты, проводить прямые и косвенные измерения с использованием приборов, обрабатывать результаты измерений, понимать неизбежность погрешностей любых измерений, оценивать границы погрешностей измерений, представлять результаты измерений с помощью таблиц, графиков и формул.

- 7. Обнаруживать зависимости между физическими величинами, выводить из экспериментальных фактов и теоретических моделей физические законы, объяснять полученные результаты и делать выводы;
- 8. Понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- 9. Формирование умения применять теоретические знания по физике на практике, решать физические задачи; планировать в повседневной жизни свои действия с применением полученных знаний законов механики; умения пользоваться физическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
 - 0. Владение базовым понятийным аппаратом по основным разделам содержания.

3. СОДЕРЖАНИЕ ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «Методы решения физических задач»

ГЛАВА 1. СТРОЕНИЕ И СВОЙСТВА ВЕЩЕСТВА – 4 ЧАСА

Строение вещества. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел.

Лабораторные работы:

Измерение размеров молекул с помощью палетки.

Измерение размеров малых тел методом рядов.

Примерные темы проектных и исследовательских работ:

Создание объемной модели кристаллической решетки некоторых веществ.

Способы измерения размеров молекул.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 2. ОСНОВЫ ТЕРМОДИНАМИКИ – 7 ЧАСОВ

Тепловое равновесие. Температура и способы ее измерения. Связь температуры со скоростью хаотического движения частиц.

Внутренняя энергия и способы ее изменения. Виды теплообмена. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах. Необратимость процессов теплообмена.

Лабораторные работы:

Изучение скорости теплообмена.

Измерение удельной теплоемкости жидкости.

Примерные темы проектных и исследовательских работ:

История создания приборов для измерения температуры.

Виды теплопередачи, использование в технике и быту.

Использование знаний о видах теплообмена в строительстве.

Использование знаний о видах теплообмена в работе модельера.

Вечный двигатель – миф или реальность?

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 3. ИЗМЕНЕНИЕ АГРЕГАТНЫХ СОСТОЯНИЙ ВЕЩЕСТВА – 4 ЧАСА

Испарение и конденсация, кипение. Зависимость температуры кипения от давления. Влажность воздуха. Плавление и кристаллизация.

Удельная теплота плавления и парообразования. Удельная теплота сгорания. Расчет количества теплоты при теплообмене.

Лабораторные работы:

Изучение зависимости скорости испарения от внешних условий и строения вещества.

Измерение влажности воздуха с помощью волосяного гигрометра.

Примерные темы проектных и исследовательских работ:

Рост кристаллов: зависимость скорости роста от внешних условий.

Рост кристаллов: зависимость формы кристаллической решетки от примесей.

Тепловые явления в фольклоре разных народов.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 4. ГАЗОВЫЕ ЗАКОНЫ – 4 ЧАСА

Газовые законы: закон Бойля-Мариотта, закон Шарля, закон Гей-Люссака. Объединенный газовый закон.

Примерные темы проектных и исследовательских работ:

Составление авторской задачи по теме главы.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 5. ТЕПЛОВЫЕ МАШИНЫ – 3 ЧАСА

Преобразование энергии в тепловых машинах. Паровая турбина, ДВС, реактивный двигатель. КПД теплового двигателя. Принцип действия холодильной машины.

Примерные темы проектных и исследовательских работ:

Границы применения ДВС и экологические проблемы его использования.

Различие в устройстве работы четырехтактного двигателя и дизеля.

Реактивные лвигатели.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 6. ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ – 4 ЧАСА

Электризация тел. Два вида электрических зарядов, их взаимодействие. Закон Кулона. Принцип суперпозиции сил.

Электрическое поле и его действие на электрические заряды. Напряженность ЭП. Линии напряженности ЭП. Конденсатор, энергия ЭП конденсатора.

Примерные темы проектных и исследовательских работ:

Исследование взаимодействия заряженных тел.

Выполнение действующей модели электроскопа.

Модель «Пляшущие человечки»

Составление авторской задачи по теме главы.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 7. ЗАКОНЫ ПОСТОЯННОГО ТОКА – 5 ЧАСОВ

Постоянный электрический ток. Носители электрических зарядов в различных веществах. Полупроводниковые приборы.

Направление и сила тока. Электрический ток в проводниках. Закон Ома для участка цепи. Сопротивление проводника. Измерение силы тока и напряжения. Работа и мощность тока. Источники электрического тока. Закон Джоуля-Ленца.

Лабораторные работы:

Исследование тепловой отдачи нагревателя.

Измерение удельного сопротивления проводника.

Примерные темы проектных и исследовательских работ:

Составление авторской задачи по теме главы.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

ГЛАВА 8. ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ – З ЧАСА

Магнитное взаимодействие. Магнитное поле. Линии магнитной индукции. Действие МП на проводник с током. Закон Ампера. Магнитное взаимодействие проводников с током. Электродвигатель постоянного тока. Магнитные свойства вещества. Явление ЭМИ. Опыты Фарадея. Магнитный поток. Закон ЭМИ.

Лабораторные работы:

Сборка электромагнита.

Сборка модели электродвигателя.

Получение спектров магнитного поля.

Примерные темы проектных и исследовательских работ:

Электромагниты: их устройство и применение.

Применение явления ЭМИ в различных гаджетах.

Формы организации деятельности – классно-урочная, регламентированная дискуссия, работа в малых группах

Виды деятельности — чтение и обсуждение текста статей интернет-сайтов, обсуждение докладов и презентаций, составление и решение задач, обсуждение способов решения.

4. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «Методы решения физических задач»

No॒	№ занятия	Тема занятия	Основные виды учебной деятельности	Дата по	Дата по
занятия	в теме		·	плану	факту
		ГЛАВА 1. СТРОЕНИ	Е И СВОЙСТВА ВЕЩЕСТВА– 4 ЧАСА		
1.	1.	Строение вещества. Взаимодействие	Решение качественных задач	1 уч.	
1.	1.	частиц вещества.		неделя	
2.	2.	Модели строения газов, жидкостей и	Обсуждение различных гипотез о строении различных	2 уч.	
۷.	۷.	твердых тел.	веществ и доказательств, их подтверждающих	неделя	
3.	3.	Измерение размеров молекул с	D	3 уч.	
٥.	٥.	помощью палетки.	Выполнение практических работ в малых группах	неделя	
4.	4.	Измерение размеров малых тел методом	Выполнение практических работ в малых группах	4 уч.	
4.	4.	рядов	Выполнение практических работ в малых группах	неделя	
		ГЛАВА 2. ОСНО	ВЫ ТЕРМОДИНАМИКИ – 7 ЧАСОВ		
			Чтение научных статей о необратимости тепловых		
6.	1.	Как достичь теплового равновесия?	процессов. Изучение и анализ иллюстративного	5 уч.	
0.	1.	Необратимость процессов	материала на примере мультфильма «Двенадцать	неделя	
			месяцев»		
			Обсуждение докладов и презентаций учащихся на тему:		
7.	2.	Когда и как изобрели термометр?	«История создания приборов для измерения	6 уч.	
/.	2.		температуры». Создание модели термометра с жидким и	неделя	
			твердым рабочим телом		
			Работа в малых группах над созданием алгоритма		
			решения качественных и расчетных задач на расчет	7 уч.	
8.	3.	Суть первого начала термодинамики	изменения внутренней энергии; составление авторских	луч. неделя	
			задач по теме «Моя задача на расчет изменения	неделя	
			внутренней энергии»		
№	№ занятия	Тема занятия	Основные виды учебной деятельности	Дата по	Дата по
занятия	в теме	тема заплтил	осповные виды учесной деятельности	плану	факту
9.	4.	Использование физических знаний о	Обсуждение докладов и презентаций учащихся на тему:	8 уч.	

		теплообмене при строительстве жилья, подборе одежды, в хозяйственной деятельности человека	«Виды теплопередачи, использование в технике и быту. Использование знаний о видах теплообмена в строительстве, в работе модельера»	неделя	
10.	5.	Сколько калорий нужно для?	Работа в малых группах над созданием алгоритма решения качественных и расчетных задач на расчет количества теплоты; составление авторских задач по теме «Моя задача на расчет количества теплоты»	9 уч. неделя	
11.	6.	«Если энергия где-то отнимется, то»	Обсуждение докладов и презентаций учащихся на тему: «Вечный двигатель – миф или реальность?»	10 уч. неделя	
12.	7.	Измеряем и исследуем!	Практическая работа в малых группах по теме «Изучение скорости теплообмена. Измерение удельной теплоемкости жидкости», обсуждение и объяснение результатов, построение графической зависимости температуры от времени	11 уч. неделя	
		ГЛАВА 3. ИЗМЕНЕНИЕ АГРІ	ЕГАТНЫХ СОСТОЯНИЙ ВЕЩЕСТВА – 4 ЧАСА		
13.	1.	Когда, почему, что и как кипит и испаряется	Практическая работа в малых группах по теме «Изучение зависимости скорости испарения от внешних условий и строения вещества», построение графической зависимости скорости испарения от температуры, площади поверхности	12 уч. неделя	
14.	2.	Какая влажность самая полезная	Практическая работа в малых группах по теме «Измерение влажности воздуха с помощью волосяного гигрометра», обсуждение и объяснение результатов	13 уч. неделя	
15.	3.	Если кристаллы растут, то они живые?	Представление результатов работы по выращиванию кристаллов; обсуждение зависимости скорости роста от внешних условий, зависимости формы кристалла от примесей, составление графических иллюстраций этих зависимостей	14 уч. неделя	
№ занятия	№ занятия в теме	Тема занятия	Основные виды учебной деятельности	Дата по плану	Дата по факту
16.	4.	Расчетливая бережливость	Обсуждение докладов и презентаций учащихся на тему:	15 уч.	

			«Тепловые явления в фольклоре разных народов»	неделя	
ГЛАВА 4. ГАЗОВЫЕ ЗАКОНЫ – 4 ЧАСА					
17.	1.	Почему изопроцессы так называются?	Обсуждение докладов и презентаций учащихся на тему: «История открытия газовых законов» Реконструкция открытия закона Гей-Люссака	16 уч. неделя	
18.	2.	Эти занятные графики	Работа в малых группах над составлением алгоритма решения графических задач на чтение и перестройку диаграмм состояния газа (графический и аналитический способ решения задач)	17 уч. неделя	
19.	3.	Как водяной паук строит свой дом?	Разбор задач на основе природных данных, составление авторских задач на использование газовых законов	18 уч. неделя	
20.	4.	Объединим газовые законы, чтобы получить	Работа над составлением текстовых задач «Моя задача на применение объединенного газового закона» и их последующее решение (отработка алгоритма решения задач аналитическим способом)	19 уч. неделя	
		ГЛАВА 5. ТЕ	ПЛОВЫЕ МАШИНЫ – З ЧАСА		
21.	1.	Как работают газ и пар?	Обсуждение докладов и презентаций учащихся на тему: «Границы применения ДВС и экологические проблемы его использования. Реактивные двигатели»	20 уч. неделя	
22.	2.	Почему КПД теплового двигателя всегда низкий	Разбор принципиальной схемы устройства и различий в работе четырехтактного двигателя и дизеля. Работа в малых группах по решению задач на расчет КПД тепловых двигателей	21 уч. неделя	
23.	3.	Необходимый предмет на кухне – холодильник	Обсуждение докладов и презентаций учащихся на тему: «История вещей: создание первой модели холодильника, усовершенствование» Обсуждение природного явления «вечная мерзлота»: можно ли построить природный холодильник?	22 уч. неделя	
№ занятия	№ занятия в теме	Тема занятия	Основные виды учебной деятельности	Дата по плану	Дата по факту
ГЛАВА 6. ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ – 4 ЧАСА					

24.	1.	Янтарные явления, открытые Фалесом из Милета	Практическая работа в малых группах «Исследование взаимодействия заряженных тел», обсуждение и объяснение результатов. Выполнение действующей модели электроскопа	23 уч. неделя	
25.	2.	Принцип суперпозиции сил и полей	Работа над составлением текстовых задач «Моя задача на применение закона сохранения электрического заряда и закона Кулона» и их последующее решение аналитическим или графическим способом	24 уч. неделя	
26.	3.	Силовые линии можно увидеть	Практическая работа в малых группах над созданием модели «Пляшущие человечки», обсуждение и объяснение результатов.	25 уч. неделя	
27.	4.	Лейденская банка и ее энергия	Работа над составлением текстовых задач «Моя задача на расчет параметров конденсатора» и их последующее решение аналитическим способом	26 уч. неделя	
		ГЛАВА 7. ЗАКОНЬ	Ы ПОСТОЯННОГО ТОКА – 5 ЧАСОВ		
28.	1.	Какими бывают носители заряда?	Решение задач	27 уч. неделя	
29.	2.	Что такое полупроводник	Обсуждение докладов и презентаций учащихся на тему: «Полупроводники: ленивцы или неутомимые труженики» Обсуждение явления «сверхпроводимость»: можно ли создать вечный ток в проводнике?	28 уч. неделя	
30.	3.	Альтернативные источники тока	Обсуждение докладов и презентаций учащихся на тему: «Источники электрического тока: история создания гальванического элемента и электрического двигателя»	29 уч. неделя	
31.	4.	Тепловая отдача нагревателя	Практическая работа в малых группах «Исследование тепловой отдачи нагревателя», обсуждение и объяснение результатов. Способы повышения ТОН нагревательного элемента.	30 уч. неделя	
№ занятия	№ занятия в теме	Тема занятия	Основные виды учебной деятельности	Дата по плану	Дата по факту
32.	5.	Сопротивление проводника	Практическая работа в малых группах «Измерение	31 уч.	

			удельного сопротивления проводника», обсуждение и	неделя
			объяснение результатов.	
		ГЛАВА 8. ЭЛЕКТРО	ОМАГНИТНЫЕ ЯВЛЕНИЯ – З ЧАСА	
33.	1.	Практическое применение магнитного действия электрического тока	Практическая работа в малых группах «Сборка электромагнита. Сборка модели электродвигателя», обсуждение и объяснение результатов	32 уч. неделя
34.	2.	Как увидеть магнитное поле?	Практическая работа в малых группах «Получение спектров магнитного поля», обсуждение и объяснение результатов.	33 уч. неделя
35.	3.	На что способно Магнитное поле и его проявления	Обсуждение докладов и презентаций учащихся на тему: «Электромагниты: их устройство и применение. Применение явления ЭМИ в различных гаджетах»	34 уч. неделя

Перечень учебно-методических средств обучения

Литература для учителя

- 1. Орлов В. Л., Сауров Ю. А. «Методы решения физических задач» («Программы элективных курсов. Физика. 9-11 классы. Профильное обучение»). Составитель В. А. Коровин. Москва: Дрофа, 2005 г.
- 2. Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2007 г. (мастерская учителя).
- 3. Каменецкий С. Е., Орехов В. П. «Методика решения задач по физике в средней школе», М., Просвещение, 1987 г.
- 4. Ромашевич А. И. «Физика. Механика. 10 класс. Учимся решать задачи», М., Дрофа, 2007 г.
- 5. Балаш В. А. «Задачи по физике и методы их решения», М., просвещение, 1983 г.
- 6. Яворский Б. М., Селезнев Ю. А. «Справочное руководство по физике для поступающих в вузы и для самообразования», М., Наука, 1989 г.
- 7. Бобошина С. Б. «ЕГЭ. Физика. Практикум по выполнению типовых тестовых заданий», М., Экзамен, 2009 г.
- 8. Курашова С. А. «ЕГЭ. Физика. Раздаточный материал тренировочных тестов», СПб, Тригон, 2009 г.
- 9. Москалев А. Н., Никулова Г. А. «Готовимся к единому государственному

1. Литература для обучающихся

- 1. Трофимова Т. И. «Физика для школьников и абитуриентов. Теория. Решение задач. Лексикон», М., Образование, 2003 г.
- 2. Ромашевич А. И. «Физика. Механика. Учимся решать задачи. 10 класс», М., Дрофа, 2007 г.
- 3. Минько Н. В. «Физика: полный курс. 7-11 классы. Мультимедийный репетитор (+CD)»,СПб, 2009 г.
- 4. Балаш В. А. «Задачи по физике и методы их решения», М., Просвещение, 1983 г.
- 5. Козел С. М., Коровин В. А., Орлов В. А. и др. «Физика. 10—11 кл.: Сборник задач сответами и решениями», М., Мнемозина, 2004 г.
- 6. Малинин А. Н. «Сборник вопросов и задач по физике. 10—11 классы», М.,Просвещение, 2002 г.
- 7. Меледин Г. В. «Физика в задачах: экзаменационные задачи с решениями», М., Наука, 1985 г.
- 8. Черноуцан А. И. «Физика. Задачи с ответами и решениями», М., Высшая школа, 2003 г.
- 9. . Степанова Г. Н. «Сборник задач по физике: для 10-11 классов общеобразовательных учреждений», М., просвещение, 2000 г.